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SUMMARY

The goal of our report is to compare a number of algorithms for computing a large number of
eigenvectors of the generalized eigenvalue problem arising from a modal analysis of elastic structures
using preconditioned iterative methods. The shift-invert Lanczos algorithm has emerged as the
workhorse for the solution of this generalized eigenvalue problem; however a sparse direct method is
required for the resulting set of linear equations. Instead, our report considers the use of preconditioned
iterative method; in particular, we employ a scalable algebraic multigrid (AMG) preconditioner. We
present a review of available preconditioned eigensolvers and a numerical comparison on two problems.
Copyright c© 2003 John Wiley & Sons, Ltd.
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1. Introduction

The goal of our report is to compare a number of algorithms for computing a large number of
eigenvectors of generalized eigenvalue problem

Kx = λMx, K,M ∈ Rn×n, (1)

using preconditioned iterative methods. The matrices K and M are large, sparse and symmetric
positive semi-definite and arise in a modal analysis of elastic structures. The order n is typically
of order 105 − 106 and several hundred to thousand eigenvectors are often required as the
frequency range of interest for the modal analysis increases. The current state of the art is
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to use a block Lanczos [14] code; however a sparse direct method is needed for the shift-
invert transformation (K−σM)−1M employed. This algorithm is commercially available and
is incorporated in the MSC.Nastran finite element library.

Unfortunately, the cost of the above partial eigensolution may dramatically increase as the
size of the problem and/or the frequency range for the analysis increases. High modal density
(close spacing of eigenvalues) also contributes to the cost. The three major costs associated
with a shift-invert block Lanczos code are

1. factoring K− σM;
2. solving linear systems with the above factor;
3. the cost (and storage) of maintaining orthogonality of hundreds, perhaps, thousands of

Lanczos vectors.

The efficient implementation of such an approach is feasible as long as the problem size n is not
so large so that the above three costs are prohibitive. We conclude our discussion with three
important points concerning the cost and effectiveness of a shift-invert block Lanczos code.
The first point to make is that the cost associated with 1 and 2 grows nearly quadratically
with increasing dimension n and so the approach is not scalable. Loosely, by scalable we
mean that the computational cost of a solution strategy is proportional to the problem
size. The second point is that when 1 and 2 can be carried out, Lanczos quickly produces
accurate approximations to the eigenvalues and eigenvectors near σ and so a sequence of
factorizations with shifts σ = σ1, . . . , σp are typically computed. The third point is that the cost
of maintaining orthogonality of the Lanczos vectors is minimized by a careful implementation
of the Lanczos three term recurrence. The reader is referred to [14] for further details and
information on a state-of-the-art block Lanczos implementation for problems in structural
dynamics.

What if a sparse direct method is no longer a viable option because n is so large that
the memory requirements (and associated I/O demands) for a sparse direct solver prove
insurmountable? Then we must consider other approaches to computing a large number of
eigenvectors. Alternatives that we will consider in this report are the following:

1. replace the sparse direct method with a scalable preconditioned iterative method within
the Lanczos algorithm;

2. replace the Lanczos algorithm with a scalable preconditioned eigenvalue algorithm (that
perhaps better utilizes preconditioned iterative methods).

The former approach is not new and neither are algorithms for the latter alternative. What
we propose is a comparison of several of these alternatives on a representative set of problems.

The goal of our report will be to investigate how these methods perform if quite a large
number, say a few hundred eigenvalues and eigenvectors are to be computed when an algebraic
multigrid (AMG) preconditioner is used. To the best of our knowledge, there is no comparable
study. The recently published paper [6] compares fewer methods and uses an incomplete
Cholesky (IC) factorization preconditioner. An IC preconditioner, in contrast to an AMG
preconditioner, does not scale with respect to the problem size, specifically, the mesh (see [37]
for a recent review of AMG methods). We also remark that the commercial finite element
analysis program ANSYS now provides an AMG based solver (the algorithm implemented
is an enhanced version of the smoothed aggregation scheme introduced in [38]). The reader
is referred to [29] for details and a performance comparison of the AMG solver. Therefore,
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our comparison provides an indication of the cost of solving extremely large-scale eigenvalue
problems for numerous eigenvalues and eigenvectors.

The alternative algorithms we’ll discuss can be broadly classified into two groups. The
first group are gradient based schemes that attempt to minimize the Rayleigh-quotient. These
include Lanczos and conjugate gradient schemes. The second group are schemes that determine
stationary points of the Rayleigh quotient via a Newton iteration. This includes Davidson based
methods such as the Jacobi-Davidson algorithm.

All of the algorithms we compare, except for the Lanczos algorithm, only require a single
application of the preconditioner per iteration as an approximation to the action of K−1

on a vector. This single application of a preconditioner is in direct analogy to the use of a
preconditioned iterative method (for instance, the preconditioned conjugate gradient iteration)
for the numerical solution of a PDE with K. In contrast, a Lanczos iteration for (1) requires
an inner iteration that typically results in several applications of a preconditioner.

We report on numerical experiments that we performed by means of realistic eigenvalue
problems stemming from finite element discretizations of elastodynamic problems of structural
dynamics and vibrations. Although our problems are of most interest for structural analysts
we believe that our results are applicable to problems in other domains such as computational
chemistry.

The paper is organized as follows. In sections 2–4 we summarize the three types of algorithms
that we are going to investigate: Rayleigh quotient minimization algorithms, inexact Newton
iterations for determining the stationary points of the Rayleigh quotient, and the Lanczos
iteration. We also provide pseudocode for the implementations that we tested. We hope these
prove useful to other researchers (and authors of the algorithms). Sections 5 presents and
discuss our numerical experiments.

2. Algorithms I: Rayleigh quotient minimization

Let the eigenvalues of problem (1) be arranged in ascending order,

λ1 ≤ λ2 ≤ · · · ≤ λn, (2)

and let Kuj = λjMuj where the eigenvectors uj are assumed to be M-orthonormalized,
〈ui,uj〉 ≡ uT

i Muj = δij . The algorithms that we are considering in this section are designed
to exploit the characterization of the eigenvalues of (1) as successive minima of the Rayleigh
quotient

ρ(x) =
xT Kx
xT Mx

=
〈M−1Kx,x〉

〈x,x〉
, x 6= 0 (3)

of the matrix pencil (K,M),

λp = min
xT Muj=0
j=1,...,p−1

ρ(x), p = 1, 2, . . . , n. (4)

Algorithm 2.1 exploits this characterization and provides a skeleton for the algorithms
to be discussed in this section. In this basic algorithm, successive eigenpairs are computed
by Rayleigh quotient minimization in step (3) and then deflated by restriction in step (4).
Of course, in an actual implementation, in step (3) of Algorithm 2.1 the eigenvector uj is
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Algorithm 2.1: Basic algorithm

(1) Q0 := [].
(2) for j = 1, . . . , p do
(3) Compute a vector uj that minimizes the

Rayleigh quotient (3) in {x ∈ Rn | QT
j−1Mx = 0}.

(4) Qj := [Qj−1,uj ].
(5) end for

computed only approximatively. We accept uj as an approximation to an eigenvector if the
residual r(uj) := (K − ρ(uj)M)uj is sufficiently small, i.e., if ‖r(uj)‖ ≤ ε for some given
positive value ε. The matrix Qj is augmented with uj in step (4) when the associated residual
satisfies the acceptance test.

2.1. The deflation-accelerated conjugate gradient method

Hestenes and Karush [15] were the first to propose an algorithm to compute the minimum
eigenvalue of a symmetric eigenvalue problem by the steepest descent method. Let xk be an
approximate eigenvector. Then, the next iterate is given by

xk+1 = xk + αkpk (5)

where the search direction pk is proportional to the negative gradient of the Rayleigh quotient

g(x) := grad ρ(x) =
2

xT Mx
(K− ρ(x)M)x =:

2
xT Mx

r(x) (6)

at xk. The scalar αk in (5) is chosen so that ρ(xk+1) is minimal. This requires the numerical
solution of an order two eigenvalue problem.

Bradbury and Fletcher [8] introduced a conjugate gradient-type algorithm to minimize the
Rayleigh quotient. The search direction pk in (5) is set to be a linear combination of negative
gradient and previous search direction pk = −g(xk) + βkpk−1 so that consecutive search
directions are conjugate or K-orthogonal. This implies that

βk = pT
k−1Khk/pT

k−1Kpk−1, (7)

where hk = N−1gk = N−1g(xk) is the preconditioned residual at xk.
In practice, either the Bradbury-Fletcher formula

βk = hT
k gk/hT

k−1gk−1. (8)

or the one by Polak [28] is employed

βk = gT
k (hk − hk−1)/gT

k−1hk−1. (9)

The formulas (7)-(9) are equivalent in the context of linear equations. Computing eigenvalues
is however a nonlinear problem. Feng and Owen [10] have executed a comparison and found
that strategies (8) and (9) have similar convergence properties and are to be preferred over (7).
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Algorithm 2.2: Deflation-accelerated conjugate gradient algorithm (DACG)

(1) Choose random vector x0, xT
0 Mx0 = 1, that satisfies QT

j−1Mx0 = 0.
(2) g0 := Kx0 − ρ0 Mx0 where ρ0 = xT

0 Kx0.
(3) Set k := 0; v := 1.
(4) while ‖gk‖2 > tol do
(5) Solve the preconditioned linear system Nhk = gk

(6) z := hT
k gk; βk := z/v; v := z.

(7) If k = 0 then pk := −hk else pk := −hk + βkpk−1 end if.
(8) pk := pk −Qj−1(QT

j−1Mpk). pk := pk/‖pk‖M .
(9) Let (ϑ1,d1) be the smaller eigenpair of the 2× 2 eigenvalue problem

([xk,pk]T K[xk,pk]) d = ϑ ([xk,pk]T M[xk,pk]) d.
(10) Set ρk+1 := ϑ1 and xk+1 := [xk,pk]d1.
(11) k := k + 1.
(12) gk := Kxk − ρk Mxk.
(13) end while
(14) uj = xk.

The Bradbury-Fletcher algorithm embedded in our basic Algorithm 2.1 yields the deflation-
accelerated conjugate gradient (DACG) algorithm. We have adopted this name from a long
series of papers by Bergamaschi, Gambolati and coworkers [27, 12, 4, 5]. See the the papers
[31, 32] by Schwarz for proposed variants of a DACG algorithm.

Algorithm 2.2 gives a listing of DACG. Step (1) initializes the random vector x0. In step (6),
the scalar βk is computed according to (8). Step (8) orthogonalizes the current search direction
pk with the column span of Qj−1 that contains the eigenvector approximations.

We now discuss implementation issues associated with Algorithm 2.2. We do not store the
matrix MQj because of memory considerations. In order to maintain the M-orthogonality of
the columns of Qj to machine precision, the classical Gram-Schmidt algorithm with iterative
refinement [16, 7] is employed.

Auxiliary vectors are used for storing Kxk, Mxk, Kpk, and Mpk in addition to storage
for xk, gk, hk, pk. Only one matrix-vector multiplication with K and M have to be executed
per iteration step. The storage requirements of the overall algorithm are thus (p+8)n floating
point numbers.

2.2. The block Rayleigh quotient minimization algorithm

Longsine and McCormick [21] suggested several variants for blocking Algorithm 2.2. In this
section, we consider a straight-forward generalization of DACG that we call BRQMIN.

The vectors xk, gk, hk, and pk of Algorithm 2.2 are replaced by block matrices Xk,
Gk,Hk,Pk ∈ Rn×q, respectively. The normalizations in steps (1) and (8) of Algorithm 2.2 are
replaced by Gram-Schmidt orthogonalization with respect to the M-inner product. Step (9)
is replaced by the solution of an eigenvalue problem of order 2q. The eigenvectors associated
with the q smallest eigenvalues values determine the next iterate Xk+1.

As in the single vector algorithm, there are several possibilities for selecting Bk, the block
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generalization of βk in step (6) of Algorithm 2.2. If the matrix Bk in

Pk = −Hk + Pk−1Bk. (10)

is chosen such that PT
k KPk−1 = O, then

Bk = (PT
k KPk)−1(PT

k KHk) (11)

corresponds to (7). Choosing Bk according to (8) or (9) is also possible [24], but again these
expressions are equivalent with (11) only in the context of linear system solving. In numerical
experiments we fared best with the choice (11).

The columns of [Xk,Pk] (or just of Pk) may become nearly linearly dependent as BRQMIN
evolves. Therefore, the matrices [Xk,Pk]T M[Xk,Pk] or PT

k KPk on the right hand side of
the eigenvalue problem in step (9) of the algorithm and in (11), respectively, may become ill-
conditioned. If this ill-conditioning is detected, we replace Pk with Hk that effectively restarts
the algorithm with the best eigenvector approximations Xk.

Finally, we remark that in our experiments, the first column of Xk is not always the first to
converge and several columns can converge simultaneously. The memory consumption of this
algorithm is (p+8q)n+O(q2) as we also store the auxiliary block matrices KXk,MXk,KPk,
and MPk.

2.3. The locally-optimal block preconditioned conjugate gradient method

In BRQMIN the Rayleigh quotient is minimized in the 2q-dimensional subspace generated by
the eigenvector approximations Xk and the search directions Pk = −Hk + Pk−1Bk. Instead,
Knyazev [18] suggests that the space for the minimization be augmented by the q-dimensional
subspaceR(Hk). The resulting algorithm is deemed ‘locally-optimal’ because ρ(x) is minimized
with respect to all available vectors.

If dj = [dT
1j ,d

T
2j ,d

T
3j ]

T , dij ∈ Rq, is the eigenvector corresponding to the j-th eigenvalue
of (1) restricted to R([Xk,Hk,Pk−1]), then the j-th column of Xk+1 is the corresponding Ritz
vector

Xk+1ej := [Xk,Hk,Pk−1] dj = Xkd1j + Pkej , (12)

with
Pkej := Hkd2j + Pk−1d3j .

Notice that P0 is an empty matrix such that the eigenvalue problem in step 8 of the
locally-optimal block preconditioned conjugate gradient method (LOBPCG), displayed in
Algorithm 2.3, has order 2q only for k = 0. In fact the first step of LOBPCG is equal to
the first step of BRQMIN.

The algorithm as proposed by Knyazev [18] was designed to compute just a few eigenpairs
and so a memory efficient implementation was not presented. For instance, in addition to
Xk,Rk,Hk,Pk, the matrices MXk,MHk,MPk and KXk,KHk,KPk are also stored. The
resulting storage needed is prohibitive if more than a handful of eigenpairs are needed.

A more memory efficient implementation results when we proceed as in BRQMIN and
iterate with blocks of width q in the space orthogonal to the already computed eigenvectors.
The computed eigenvectors are stored in Q and neither MQ nor KQ are stored. Hence only
storage for (p + 10q)n +O(q2) numbers is needed.
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Algorithm 2.3: The locally-optimal block preconditioned conjugate gradient
method (LOBPCG)

(1) Choose random matrix X0 ∈ Rn×q with XT
0 MX0 = Iq. Set Q := [ ].

(2) Compute (XT
0 KX0)S0 = S0Θ0, (Spectral decomposition)

where ST
0 S0 = Iq, Θ0 = diag(ϑ1, . . . , ϑq), ϑ1 ≤ . . . ≤ ϑq.

(3) X0 := X0S0; R0 := KX0 −MX0Θ0; P0 := [ ]; k := 0.
(4) while rank(Q) < p do
(5) Solve the preconditioned linear system NHk = Rk

(6) Hk := Hk −Q(QT MHk).
(7) K̃ := [Xk,Hk,Pk]T K[Xk,Hk,Pk].
(8) M̃ := [Xk,Hk,Pk]T M[Xk,Hk,Pk].
(9) Compute K̃S̃k = M̃S̃kΘ̃k (Spectral decomposition)

where S̃T
k M̃S̃k = I3q, Θ̃k = diag(ϑ1, . . . , ϑ3q), ϑ1 ≤ . . . ≤ ϑ3q.

(10) Sk := S̃k[e1, . . . eq], Θ := diag(ϑ1, . . . , ϑq).
(11) Pk+1 := [Hk,Pk]Sk,2; Xk+1 := XkSk,1 + Pk+1.
(12) Rk+1 := KXk+1 −MXk+1Θk.
(13) k := k + 1.
(14) for i = 1, . . . , q do (Convergence test)
(15) if ‖Rkei‖ < tol then
(16) Q := [Q,Xkei]; Xkei := t, with t a random vector.
(17) M-orthonormalize the columns of Xk.
(18) end if
(19) end for
(20) end while

In an analogous fashion with BRQMIN, the columns of [Xk,Hk,Pk] may become linearly
dependent leading to ill-conditioned matrices K̃ and M̃ in step (9) of the LOBPCG algorithm.
If this is the case we simply restart the iteration with random Xk orthogonal to the computed
eigenvector approximations. More sophisticated restarting procedures that retain Xk but
modified Hk and/or Pk were much less stable in the sense that the search space basis again
became linearly dependent within a few iterations. Restarting with random Xk is a rare
occurrence and in our experience, has little effect on the overall performance of the algorithm.

3. Algorithms II: Newton iteration-type methods

A second class of algorithms we are going to compare are methods that try to compute the
stationary points of the Rayleigh quotient, i.e., the zeros of

g(x) = grad ρ(x)
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by means of a Newton iteration. The definition of ρ(x) implies that g(x)T x = 0. The Jacobian
of g, that is the Hessian [30] of ρ, is

H(x) =
2

xT Mx

(
K− ρ(x)M− g(x)(Mx)T − (Mx)g(x)T

)
. (13)

Thus, one step of Newton iteration for finding a solution of g(x) = 0 is

xk+1 = xk −H(xk)−1gk = xk + tk, gk := g(xk), (14)

where the Newton correction tk is the solution of(
K− ρkM− gkxT

k M−MxkgT
k

)
tk = −rk, ρk := ρ(xk), rk := r(xk). (15)

We remark that the Hessian is always singular when x is an eigenvector because then
H(x)x = −g(x) = 0. If x is the eigenvector associated with the smallest eigenvalue, then the
Hessian is positive semidefinite otherwise for any other eigenvector, the Hessian is indefinite
because a non-zero symmetric matrix with the property that xT H(x)x = −xT g(x) = 0 has
at least one negative eigenvalue.

If we require that xT
k Mtk = 0 then (15) is equivalent to[

K− ρkM Mxk

xT
k M 0

](
tk

τk

)
=

(
−rk

0

)
. (16)

This saddle point matrix is nonsingular unless (xk, ρk) is an eigenpair of (1) with ρk a multiple
eigenvalue. If K− ρkM is nonsingular then the solution of (15)-(16) is

tk = −xk + τk(K− ρkM)−1Mxk, (17)

where

τk = −gT
k tk = −1/(xT

k M(K− ρkM)−1Mxk).

Substituting (17) into (14) yields

xk+1 = τk(K− ρkM)−1Mxk (18)

that is Rayleigh quotient iteration [26]. Rayleigh quotient iteration has a cubic rate of
convergence, i.e., if the sequence {xk}∞k=0 converges to an eigenvector u of (1) then the angle
φk := ∠(xk,u) between xk and u decreases cubically, |φk+1| ≤ C · |φk|3 for large enough k,
see [25, 26]. This is more than what can be expected by a Newton iteration.

3.1. The Jacobi-Davidson algorithm (JDSYM)

The convergence behavior of Newton (and of Rayleigh quotient) iteration is unpredictable
far away from the solution. Therefore, in the Jacobi-Davidson algorithm [34] the Rayleigh
quotient ρk = ρ(xk) in (15)-(16) is replaced by a shift ηk that is held fixed at the beginning of
the iteration. Only near convergence is ηk = ρk in order to exploit the high convergence rate
of Rayleigh quotient iteration. Therefore, the Jacobi-Davidson algorithm uses the correction
equation

(K− ηkM− gkxT
k M−MxkgT

k )tk = −rk, xT
k Mtk = 0 (19)
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which is solved for tk.
We can, without loss of generality, assume that ‖xk‖M = 1 and so gk = rk. The constraint

xT
k Mtk = 0 implies that gT

k tk = xT
k (K − ρkM)tk = xT

k (K − ηkM)tk whence (19) can be
rewritten as

(K− ηkM)tk −MxkxT
k (K− ηkM)tk =

(I−MxkxT
k )(K− ηkM)(I− xkxT

k M)tk = −rk, xT
k Mtk = 0.

(20)

This form of the correction equation is given by Sleijpen, van der Vorst and coworkers [34, 33,
11], see also [35] for the connection of the Jacobi-Davidson algorithm with Newton’s method.
Using the relation rk = (K− ηkM)xk +(ηk − ρk)Mxk implies that the solution of (19)-(20) is

tk = −xk + τk(K− ηkM)−1Mxk, (21)

where τk = 1/(xT
k M(K− ηkM)−1Mxk). If ηk in (19)-(20) is fixed then (14)-(21) becomes

xk+1 = τk(K− ηkM)−1Mxk (22)

which is inverse iteration. If ηk = ρk then xk+1 is defined by (18) that is Rayleigh quotient
iteration.

However, the Jacobi-Davidson algorithm is not just a vector iteration. Following
Davidson [9], consecutive corrections tk are used to build a search space: In the k-th iteration
step of the algorithm the vector xk is the Ritz vector corresponding to the Ritz value ρk

closest to a target σ in the subspace R(Vk). The solution tk of the correction equation (20) is
appended to Vk to yield Vk+1. So, the dimension of the trial space is increased by one in each
iteration step. This procedure accelerates convergence and is crucial during the beginning of
the iteration when the shifts ηk are held fixed for stability reasons.

The memory requirements of the algorithm are constrained by restricting the dimension k of
R(Vk) to be no larger than input parameter jmax. If k = jmax then the iteration is restarted,
i.e., the trial space is replaced by the jmin-dimensional subspace of R(Vk) consisting of the
Ritz vectors corresponding to the jmin Ritz values closest to the target σ.

The correction equation (20) is approximately solved by a preconditioned conjugate gradient-
type method. Of course, this curtails the rate of convergence of the algorithm. However, in the
early stages of the iteration, solving the correction equation accurately does not substantially
improve the rate of convergence. Therefore, the convergence criterion of the linear system
solver is initially loose and tightens as convergence is approached [1].

The preconditioner typically has the form (I − MQ̃kQ̃T
k )N(I − Q̃kQ̃T

k M) where N is an
approximation of K− ηkM. Although the coefficient matrix in the correction equation is not
positive definite, we nevertheless can choose N so that the preconditioner is positive definite
on R(Q̃k). Then we use MINRES [3] as our system solver.

The Jacobi-Davidson algorithm for computing the p smallest eigenvalues of (1) as
implemented by Geus [13] is given in Algorithm 3.4. As in the previous algorithms, Q holds
the converged eigenvectors. The matrix Q̃ in the correction equation holds the columns of Q
augmented by Ritz vector q̃. Hence, the correction equation in step (5) of Algorithm 3.4 is
solved in the orthogonal complement of the computed eigenvector approximations. The matrix
Hk in steps (7)-(8) is constructed incrementally by appending a row and a column in each
iteration step [13]. In steps (14) and (18), respectively Hk becomes Λk.
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Algorithm 3.4: Jacobi-Davidson algorithm (JDSYM)

(1) Choose v1 with ‖v1‖M = 1. Choose target σ. Set Q := [ ]. k := 1.

(2) V1 := [v1]; q̃ := v1; ρ̃ := ρ(q̃); r := Kq̃− ρ̃Mq̃; Q̃ = [q̃].
(3) while rank(Q) < p do
(4) Choose shift: either ηk := σ or ηk := ρ̃.
(5) Solve approximately for t (Correction equation)

{(I−MQ̃Q̃T )(K− ηkM)(I− Q̃Q̃T M)t = −r, Q̃T Mt = 0.}
(6) vk+1 := (I−VkVT

k M)t; vk+1 := vk+1/‖vk+1‖M ; k := k + 1.
(7) Vk := [Vk−1,vk]; Hk = VT

k KVk. (Subspace expansion)
(8) Compute HkSk = SkΛk (Spectral decomposition)

where S−1
k =ST

k and Λk =diag(λ(k)
1 , . . , λ

(k)
k )

with |λ(k)
l − σ| ≤ |λ(k)

l+1 − σ|, l < k.
(9) repeat (Convergence test)

(10) ρ̃ := λ
(k)
1 ; q̃ := Vks1; r := Kq̃− ρ̃Mq̃.

(11) found := ‖r‖2 < ε and k>1;
(12) if found then
(13) Q := [Q, q̃]; Vk−1 := Vk[s2, . . . , sk];
(14) Λk−1 := diag(λ(k)

2 , . . . , λ
(k)
k ); Sk−1 := Ik−1; k := k − 1;

(15) end if
(16) until not(found)
(17) if k = jmax then (Restart)
(18) Vjmin

:= Vk[s1, . . . , sjmin
]; k := jmin;

(19) end if
(20) end while

The memory requirement of Algorithm 3.4 is (p+2jmax)n+O(j2
max) floating point numbers

for Q, V, and MV. A few more vectors are needed for the solution of the correction equation
by MINRES (or some other Krylov method). Of course, the memory needed for K, M and
the preconditioner have to be included in the total memory requirements.

3.2. The Jacobi-Davidson conjugate gradient algorithm (JDCG)

Notay [23] suggested two modifications to reduce the execution time of the Jacobi-Davidson
Algorithm 3.4

• The shift ηk is chosen so that the correction equation in step (6) is positive definite in
the relevant subspace R(MQk−1)⊥ so that the preconditioned conjugate gradient method
replaces MINRES. This reduces the amount of work per iteration step by a factor of two.
If K and M are both positive definite (or are brought into this form) then ηk can be set
to zero initially. As soon as the Rayleigh quotient ρ̃ is close to the desired eigenvalue λk

then ηk is set to ρ̃; Notay suggests that

‖rk‖2 ≤ ρk and |ρk/ρk−1 − 1| ≤ b,
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where b is some user provided threshold parameter, as the switching criteria (see [23] for
details). Notice, that these criteria are difficult to satisfy if the eigenvalues are clustered.

• Furthermore Notay suggests a sophisticated stopping criterion for the inner iteration.
Motivated by the aforementioned observation that the correction equation is not solved
accurately in the early stages of the outer iteration, Notay [23] derived a formula for
determining the norm of the outer residual as a function of the inner iteration.

These modifications only affect how the correction equations are solved.

4. Algorithms III: The Lanczos iteration

In this section, we briefly overview the implicitly restarted Lanczos algorithm as implemented
in ARPACK [20] as applied to (1). ARPACK was selected over others because of the wide
availability and high quality implementation.

The Lanczos iteration is a well-known method for calculating a few of the extremal
eigenvalues of a large symmetric matrix A. Given an initial starting (unit) vector q1, the
method proceeds by computing the familiar three-term recurrence

βjqj+1 = Aqj − αjqj − βj−1qj−1, where β0q0 = 0 and j ≥ 1. (23)

The eigenvalues of the symmetric tridiagonal matrix Tj consisting of αj ’s and βj ’s on the
diagonal and off-diagonals, respectively, are used to estimate those of A.

Equation (23) may be rewritten in matrix form as

AQj = QjTj + βjqj+1eT
j , (24)

where Qj = [q1,q2, . . . ,qj ], Tj is the associated tridiagonal matrix, and eT
j is the last row of

the j × j identity matrix. We call this a Lanczos reduction of order j. The Lanczos vectors
q1, . . . ,qj provide an orthogonal basis for the Krylov space span{q1,Aq1, . . . ,Aj−1q1}, and
thus Tj is the orthogonal projection of A onto this Krylov space. Notice that the vectors Aiq1

are those generated by the power method. So, the Lanczos method is a generalization of the
power method in that a sequence of iterates is used to approximate eigenvalues of A.

Unfortunately, round-off errors cause the Lanczos vectors to lose orthogonality [26]. We
briefly review two implementations of the Lanczos method that have emerged and their strategy
for dealing with the loss of orthogonality.

• Implementations based on selective and partial orthogonalization [14]. These techniques
carefully monitor the loss of orthogonality and perform additional orthogonalization steps
only when necessary.

• Orthogonalization of each new Lanczos vector against all the vectors generated.

The careful implementation of the first of these approaches is nontrivial. The second approach
removes the complication associated with monitoring the loss of orthogonality. The drawbacks
are the cost of maintaining orthogonality (on the order of nm2 floating-point operations for
m Lanczos vectors) and storing the Lanczos basis vectors. If m is kept to a moderate size, the
cost of maintaining the orthogonality of the Lanczos vectors is not a concern. We emphasize
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that the cost of maintaining full orthogonality of the Lanczos basis vectors may represent a
minor cost (say, less than 5%) of the total cost in computing the eigenvalues and eigenvectors
if m is not large and the cost of computing matrix-vector products Ax is large.

Suppose that we are able to compute m steps of (23) where m is chosen so that the
cost of maintaining the orthogonality among the Lanczos vectors to machine precision is
small. Because we are interested in the k largest eigenvalues of A, consider starting another
Lanczos iteration such that the first k Lanczos vectors span the same space as the Ritz vectors
corresponding to the k largest Ritz values of the previous Lanczos reduction. This restarting
of the Lanczos method is continued until the k largest eigenvalues of Tm satisfy the specified
tolerance. Implicit restarting [36] is an efficient and numerically stable fashion in which to
restart a Lanczos iteration. In particular, implicitly restarting a Lanczos iteration is equivalent
to subspace iteration [19]. The reader is referred to ARPACK [20] for further details on an
efficient implementation of implicit restarting.

4.1. Shift-and-invert spectral transformation

For computing some of the lowest eigenvalues of the generalized eigenvalue problem (1) it is
advisable to transform it to

(K− σM)−1Mx ≡ Ax = (λ− σ)−1x ≡ νx.

This is called a shift-and-invert spectral transformation [2] with shift σ. If K is positive definite
then often σ = 0 is set. We remark that A = (K − σM)−1M is not symmetric and so the
eigenvectors are no longer orthogonal, in general. However, this situation can be remedied by
using the inner product xT My defined by the mass matrix M in the Lanczos procedure. The
matrix (K − σM)−1M is symmetric with respect to this inner product. The eigenvectors of
the matrix stencil (K;M) are also orthogonal with respect to the M-inner product.

The key computational task is the numerical solution of the linear systems

(K− σM)xi = Mqi (25)

necessary at every step of the Lanczos iteration. The vector xi is then M-orthogonalized against
the columns of Qj to obtain qi+1. We employ an inner iteration to approximately solve the
above system. We use a preconditioned conjugate gradient iteration as the inner iteration.

Algorithm 4.5 outlines the above procedure. Notice that forming the Lanczos reduction of
length m in step (4) amounts to extending an already available Lanczos reduction of length
one in the first iteration step and of length j otherwise. Thus, this most time consuming step of
the algorithm consists of solving a sequence of m− j systems of equation of the form (25). The
Lanczos reductions are computed in the M-orthogonal complement of R(Q), which holds the
already converged eigenvector approximations. This prevents the algorithm from re-computing
eigenpairs but is of course a computationally intensive procedure. This procedure may be more
time consuming than maintaining the orthogonality among the Lanczos vectors! Step (8) of
the algorithm amounts to applying a number of perfect shift QR steps, where the shifts are
chosen to be the undesired eigenvalues of Tm.

Algorithm 4.5 requires memory for Q, Qm, and MQm, i.e. (p+2m)n floating point numbers.
Furthermore K, M and the preconditioner have to be stored, and memory for a few additional
vectors is required by the conjugate gradient algorithm. For our numerical experiments, the
restart size j is set equal to k+q where k is the desired number of eigenvalues and q is the block
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Algorithm 4.5: Restarted Lanczos Algorithm

(1) Choose q1 with q1
T (Mq1) = 1. Q = [].

(3) Iteration
(4) Form a Lanczos reduction of length m,

(K− σM)−1MQm = QmTm + βmqm+1eT
m

where QT MQm = 0
(5) Compute the spectral decomposition TmSm = SmΛm

(6) Extract the converged Ritz vectors from QmSm

and append them to Q.
(7) Implicitly restart and obtain a length j ≥ 1 Lanczos reduction

(K− σM)−1MQj = QjTj + βjqj+1eT
j ,

such that Qj contains the k Ritz vectors associated with the
smallest k eigenvalues of Tm

size. This allows for a comparison with the block algorithms. We set the maximum dimension
for the search space to be m = k + 2q.

5. Numerical Experiments

In this section we discuss the numerical experiments used for the comparisons. All the
algorithms were implemented in Matlab using sparse matrix storage and utilities (the only
exception is the Matlab routine eigs that is an interface to the Fortran library ARPACK [20]).
This allowed us the ability to focus on the algorithmic issues and determine general trends.
We are making all of our codes available in the public domain so that others, in particular the
progenitors of the respective algorithms, may check our results.

The computations were performed using Matlab Version 6.5 Release 13 on a Pentium IV
with a clock rate of 2.4 GHz and a main memory of 1 GB.

We used a Matlab version of the smoothed aggregation AMG preconditioner described
in [38, 39, 29] using a symmetric Gauss-Seidel smoother. The Matlab preconditioner is a
loose implementation of the AMG preconditioner in [17] where the primary difference is in the
quality of the agglomeration. For each of the problems we benchmarked, we give convergence
rate factors so that the quality of the AMG preconditioner can be ascertained.

The results of the two problems we benchmark are summarized in two tables. The first
column gives the block size nb used in the block methods BRQMIN and LOBPCG. The
block sizes we tested were 10, 20, 50, 100 (but less than or equal to the number of desired
eigenpairs). The block size nb also is related to the size of the restart space used for JDSYM,
JDCG and PIRL; these algorithms were restarted if the dimension of the search space reached
m = neig + 2nb. The columns indicated by Kv and Mv display the number of matrix-vector
multiplications executed with the stiffness and mass matrices, respectively. The column P−1v
gives the number of systems of equations that were solved with the preconditioner P. The
column nproj gives an estimate for the number of projections that have been executed in
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the respective algorithm to enforce orthogonality within the search space and against the
approximate eigenvectors that satisfy the convergence criterion. These are mostly projections
of the form I−QQT M. If Q ∈ Rn×q then applying I−QQT M counts as q projections. The
time this latter operation consumes is much higher than the matrix-vector multiplication with
K and M.

All the algorithms were iterated until the individual eigenvector approximations qk satisfied
‖Kqk − λkMqk‖2 ≤ 10−6. This required us to modify the convergence checking subroutine
dsconv.f in ARPACK to employ the criterion as described [14].† The eigensolver returns
if neig vectors satisfy this criterion. Note, that the matrix residual is larger than the largest
individual residual. The columns O, E1 and E2 measure the quality of the computed quantities.
The column O gives ‖QT MQ − Ineig‖2 where the matrix Q = [q1, . . . ,qneig ] contains the
neig computed eigenvector approximations. As can be seen from this column, all algorithms
except JDCG give eigenvector approximations that are M-orthogonal to machine precision.
The column indicated by E1 gives ‖QT KQ − Λ‖2 and the last column indicated by E2 the
matrix residual ‖KQ−MQΛ‖2.

All algorithms except for PIRL only require a single application of the AMG preconditioner
per iteration step; for PIRL, the AMG preconditioner is used in the conjugate gradient iteration
for solving systems of equations of the form (25). Each system is solved to an accuracy of 10−8

relative to the norm of the initial residual. (Asking for less accuracy destroys the Lanczos
relation (24) and leads to unpredictable results). In our computations we always use the same
initial vectors. We found that changing the initial vectors can change execution times and
operation counts by about 10%.

The next two sections discuss the two problems we benchmarked. Both problems were
discretized using a conforming finite element method and use the consistent mass matrix.
The first problem is the Laplacian on the unit cube discretized using trilinear elements. The
second problem is a plane-stress problem discretized using linear elements on triangles over an
unstructured grid. The third section discusses the results.

5.1. Laplace eigenvalue problem

In this section we discuss the solution of the simple model problem

−∆u(x) = −
3∑

i=1

∂2u

∂x2
i

(x) = λu(x), x ∈ Ω = (0, 1)3, u(x) = 0, x ∈ ∂Ω, (26)

in three dimensions. The eigenvalues are given by

λi1,i2,i3 = ω2
i1,i2,i3 = π2(i21 + i22 + i23), i1, i2, i3 ∈ N. (27)

Evidently, there are numerous multiple eigenvalues. We are interested in determining a number
of the smallest eigenvalues of (26). A finite element discretization with a rectangular n1-by-n2-
by-n3 grid using a uniform triangulation with piecewise trilinear elements generates stiffness
and mass matrices, K and M, respectively, of order n1n2n3. If we choose ni = n for all i then

†This required us to build the MATLAB shared library libmwarpack.so using the modified version of the
convergence checking subroutine.
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Figure 1. The clamped plate

the discretized problem has numerous multiple eigenvalues. If the ni differ then most of the
multiple eigenvalues separate into clusters of nearby eigenvalues.

We executed experiments with the 3D Laplace problem on a n-by-n-by-n grid where n = 25.
The problem size is thus N = n3 = 15, 625.

In Table I we list the statistics for some of the computations for determining the neig =
10, 50, 100, 200, and 500 smallest eigenpairs. The eigenvalue problem has reasonably well
separated eigenvalues. The smallest two eigenvalues are λ1 ≈ 29.6 and λ2 ≈ 59.4. The largest
is λ15625 ≈ 2.4 · 104. Thus the relative gaps between the smallest eigenvalues are about 10−3.
However, many of the eigenvalues are multiple, mostly triple.

In this application the AMG preconditioner had three levels. The three levels had orders
15625, 729 = 93 and 11. The memory consumed by the system matrices on the levels except
the finest and by the transfer matrices is about 30% of K. An indication of the quality of the
preconditioner is that it reduces the residual norm by a factor 106 in five conjugate gradient
iterations; this corresponds to a multigrid convergence factor of γ ≈ 0.06 (γ5 ≈ 10−6).

5.2. Plane stress eigenvalue problem

The following example is taken from the users’ guide of the Matlab PDE toolbox [22, pp.2-
38ff].

We consider a 1-by-1 meter steel plate with a right angle inset at the lower left corner and
a rounded cut at the upper right corner starting from (2/3, 1) to (1, 2/3), see Fig. 5.2.

The plate is clamped along the inset; the remainder of the boundary remains free. The plate
is 1 mm thick. Young’s modulus and Poisson’s ratio are E = 196·103 MN/m2 and ν = 0.31,
respectively.

We have constructed matrices of order 75168 that arise from an unstructured triangulation
using linear elements on triangles. The mass and stiffness matrices are scaled so that ‖K‖∞ =
‖M‖∞ = 1. The smallest and largest eigenvalues are λ1 = 9.07 · 10−7 and λ75168 = 7.62,
respectively. The minimum and maximum distance between two eigenvalues is 1.7 · 10−7 and
5.7 · 10−5.
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solver nb texec Kv Mv P−1v nproj O E1 E2

neig = 10
DACG 227 787 794 386 1713 1.2e-14 4.9e-4 9.7e-6
JDSYM 10 116 421 268 191 1340 1.1e-14 1.5e-4 7.9e-6
JDCG 10 115 390 203 194 1505 9.5e-15 4.5e-4 1.1e-5
LOPCG 88 298 319 144 881 3.0e-15 2.9e-4 8.0e-6
BRQMIN 10 42 283 467 240 1022 3.3e-15 3.0e-4 1.0e-5
LOBPCG 10 29 195 304 160 653 2.8e-15 1.4e-5 9.0e-6
PIRL 10 194 689 159 318 104 8.4e-15 1.5e-7 1.4e-7

neig = 50
DACG 1476 4724 4792 2324 63624 1.3e-13 1.3e-3 1.3e-5
JDSYM 10 603 2150 1386 971 31386 2.2e-14 3.7e-4 1.0e-5
JDCG 10 677 2239 1171 1116 40611 1.0e-12 1.4e-3 1.2e-5
LOPCG 835 2660 2801 1305 41428 9.4e-15 8.6e-4 1.1e-5
BRQMIN 50 256 1424 2566 1300 30428 4.8e-15 2.4e-4 1.4e-5

20 243 1748 3282 1600 46130 4.9e-15 7.7e-4 1.9e-5
10 342 2237 4102 1980 61141 4.8e-15 9.4e-4 1.9e-5

LOBPCG 50 164 913 1556 800 17473 4.4e-15 1.3e-5 1.0e-5
20 126 888 1657 780 21570 5.6e-15 4.1e-4 1.2e-5
10 159 1016 1879 870 26188 4.6e-15 6.3e-4 1.2e-5

PIRL 50 724 2626 605 1212 402 1.4e-14 2.7e-7 6.8e-7
10 440 1573 366 726 240 1.5e-14 9.8e-2 8.4e-2
20 437 1703 393 786 260 1.1e-14 8.6e-3 2.4e-2

neig = 100
BRQMIN 50 618 3310 6343 3100 178123 5.0e-15 9.5e-4 1.9e-5

20 762 5369 10278 5000 317049 6.0e-15 1.3e-3 2.3e-5
10 1325 8524 15639 7650 517853 5.0e-15 1.5e-3 2.52e-5

LOBPCG 50 395 1780 3327 1600 87715 5.9e-15 5.1e-4 1.1e-5
20 358 2449 4702 2200 142663 8.2e-15 7.5e-4 1.2e-5
10 391 2474 4632 2150 133811 4.8e-15 8.9e-4 1.3e-5

PIRL 50 1084 3913 903 1806 600 1.4e-14 6.8e-7 1.9e-6
20 870 3133 726 1446 480 1.3e-14 9.7e-1 2.6e-1
10 803 2873 671 1326 440 1.3e-14 1.6e-1 1.2e-1

neig = 200
BRQMIN 50 1993 10347 20316 9900 1273693 7.5e-15 1.9e-3 2.5e-5

20 2712 18636 35752 17540 2310673 9.3e-15 1.9e-3 2.5e-5
10 4387 27731 50776 25020 3211950 6.3e-15 1.8e-3 2.7e-5

LOBPCG 50 912 4633 9009 4250 540975 7.5e-15 8.3e-4 1.3e-5
20 860 5718 11091 5200 651994 9.7e-15 1.1e-3 1.3e-5
10 997 6138 11502 5390 670075 1.1e-14 1.2e-3 1.4e-5

PIRL 50 2010 7145 1656 3297 1100 2.1e-14 2.5e-3 1.5e-2
20 1615 5731 1331 2645 880 1.6e-14 8.4e-2 8.1e-2
10 1593 5595 1312 2582 860 1.7e-14 8.8e-1 2.5e-1

neig = 500
BRQMIN 100 7191 32210 63935 31200 10141725 9.5e-15 2.8e-3 2.7e-5

50 10758 53640 105771 52050 17225488 1.2e-14 2.7e-3 2.8e-5
10 18073 135810 200978 100000 22231310 1.2e-14 1.5e+3 9.5e00

LOBPCG 100 2878 12413 24379 11500 3686499 1.1e-14 1.3e-3 1.5e-5
50 3029 14467 28626 13500 4308007 9.1e-15 1.4e-3 1.4e-5
20 3187 19938 38661 18380 5686325 1.3e-14 1.5e-3 1.6e-5
10 4207 23958 44517 21290 6649367 1.2e-14 1.6e-3 1.4e-5

Table I. Statistics for some of the Matlab computations with the 3D Laplace problem using the AMG
preconditioner. Execution times (texec) are given in seconds.
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The results listed in Table II were obtained similarly as in the previous section with the AMG
preconditioner. The setup of the smoothed aggregation AMG preconditioner provided three
levels of order 75168, 7266, and 363, respectively. The AMG preconditioner reduces the residual
norm by a factor 106 in 22 conjugate gradient iterations; this corresponds to a convergence
factor of γ ≈ 0.53 (γ22 ≈ 106).

The Cholesky factor of the lowest level introduced little fill-in. The stiffness matrix required
12.5 MB of memory in Matlab’s storage scheme. The memory consumed by the coarse level
matrices and by the transfer operators is about 90% of storage needed by K; the mass matrix
required roughly 50% of the memory of K.

5.3. Discussion

We draw the following immediate conclusions from both tables.

1. The single vector iterations (DACG, JDSYM, JDCG, LOPCG and PIRL) are not
competitive with the block methods (BRQMIN and LOBPCG). Of course the former
require less memory than the latter. However, if many eigenpairs are computed the
difference is not significant.

2. BRQMIN is more sensitive to the block size than LOBPCG. For either algorithm, the
number of iteration steps increases as the block size decreases. BRQMIN was more
efficient than LOBPCG on the plane stress problem for neig ≥ 100. The execution time
and the operation counts of BRQMIN are smaller. Additionally, BRQMIN needs less
memory.

3. The execution times increase substantially for block size equal to one hundred when
computing neig = 500 eigenvectors while the operation counts decrease.

4. JDCG and JDSYM are essentially insensitive to the size of the restart and so only one
restart size was listed. PIRL needs a large restart size in order to compute accurate
results. We remark that while the PIRL results list large residuals, the residual listed is
a matrix residual and so one large residual can lead to misleading results. For PIRL, the
last several residuals were not fully converged. The apparent failure of the convergence
criterion used for PIRL is due to the inner iteration; the criterion adapted from [14]
assumes a (sparse) direct solve. PIRL can return residuals that satisfy the convergence
criterion but execution time is large.

5. When PIRL converges, the number of applications of the mass, stiffness and
preconditioner increases the least amount for PIRL as the number of eigenvectors
computed is increased. Our explanation is that the quality of the preconditioner
deteriorates as the size of the eigenvalue increases. Recall that the preconditioner remains
fixed for all algorithms except for PIRL, which uses a preconditioned inner iteration.
The number of applications of the preconditioner decreases as the block size
increases with LOBPCG and BRQMIN. Apparently, blocking seems to counteract the
deterioration of the preconditioner. This is an interesting trend that needs further
investigation.

In an attempt to understand why the single vector iterations were so much slower than the
block methods, we profiled the codes using Matlab profiler. The majority of time (at least
50%) was spent in application of the mass and stiffness matrices and preconditioner. The block
methods were able to effectively apply these matrices and preconditioner to a block of vectors
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solver nb texec Kv Mv P−1v nproj O E1 E2

neig = 10
DACG 504 343 349 166 1153 1.1e-12 3.1e-7 1.3e-5
JDSYM 10 629 429 257 200 1967 2.6e-14 3.0e-7 9.9e-6
JDCG 10 442 296 158 147 1483 2.0e-14 3.3e-6 9.8e-6
LOPCG 310 216 240 103 711 6.0e-15 4.2e-8 1.1e-5
BRQMIN 10 120 173 305 140 779 4.6e-15 6.8e-8 1.2e-6
LOBPCG 115 162 282 130 689 9.6e-15 6.7e-8 1.0e-5
PIRL 10 2692 1821 91 895 60 2.1e-14 2.8e-15 1.9e-8

neig = 50
DACG 5273 3480 3535 1710 48358 2.2e-11 2.2e-6 1.5e-5
JDSYM 20 3217 2261 1341 1061 42181 3.9e-14 1.2e-6 1.5e-5
JDCG 10 2633 1700 900 849 38265 1.3e-12 4.2e-6 1.5e-5
LOPCG 5116 3346 3490 1648 54300 1.7e-14 1.8e-6 1.6e-5
BRQMIN 50 787 912 1758 800 17765 7.8e-15 3.4e-7 1.5e-5

20 581 867 1677 760 22092 7.3e-15 9.6e-7 1.7e-5
10 683 937 1768 800 24925 7.7e-15 1.1e-6 1.8e-5

LOBPCG 50 903 912 1756 800 17865 2.2e-14 3.2e-7 1.3e-5
20 586 846 1638 740 21427 8.9e-15 9.3e-7 1.5e-5
10 657 883 1671 750 23317 1.1e-14 9.5e-7 1.4e-5

PIRL 50 12525 8559 451 4204 300 2.4e-14 1.7e-13 2.5e-11
20 7628 5227 271 2568 180 2.3e-14 9.7e-4 1.6e-2
10 5974 4099 211 2014 140 3.2e-14 5.5e-3 3.6e-2

neig = 100
BRQMIN 50 1504 1781 3529 1600 88322 8.7e-15 1.2e-6 1.9e-5

20 1309 1904 3740 1700 104719 8.3e-15 1.7e-6 1.9e-5
10 1836 2364 4461 2050 131629 8.5e-15 1.7e-6 2.3e-5

LOBPCG 50 1575 1781 3529 1600 89255 2.2e-14 1.2e-6 1.5e-5
20 1660 2364 4576 2100 141512 1.3e-14 1.9e-6 1.6e-5
10 1900 2461 4627 2120 142505 1.5e-14 2.1e-6 1.6e-5

PIRL 50 16475 11309 601 5554 400 2.2e-14 8.1e-8 1.7e-4
20 11647 8007 421 3933 280 2.3e-14 6.5e-3 4.5e-2
10 10178 6903 361 3391 240 2.5e-14 2.1e-2 8.1e-2

neig = 200
BRQMIN 50 3187 3665 7365 3350 397793 9.2e-15 2.7e-6 2.1e-5

20 3351 4649 9148 4220 536640 8.7e-15 2.5e-6 2.6e-5
10 5359 6985 13067 6160 818483 8.9e-15 2.5e-6 2.7e-5

LOBPCG 50 5090 5649 11111 5150 679115 2.2e-14 2.5e-6 1.7e-5
20 3839 5172 10082 4660 567726 2.2e-14 3.1e-6 1.7e-5
10 4941 6332 11851 5530 717345 1.8e-14 3.4e-6 1.7e-5

PIRL 50 24533 16763 901 8231 600 2.4e-14 8.0e-3 5.8e-2
20 19813 13501 721 6630 480 2.6e-14 4.0e-2 1.2e-1
10 18320 12407 661 6093 440 2.4e-14 9.5e-2 1.9e-1

neig = 500
BRQMIN 100 14997 9080 18379 8400 2520849 9.3e-15 3.8e-6 2.5e-5

50 12376 12738 25611 11950 3931518 9.5e-15 5.4e-6 3.9e-5
20 21054 26538 51425 24780 8692422 9.4e-15 5.3e-6 4.3e-5
10 37283 43651 80369 39220 13709004 9.1e-15 5.2e-6 5.4e-5

LOBPCG 100 23109 13622 26875 12400 3712428 1.7e-14 4.4e-6 1.9e-5
50 15716 16604 32691 15300 4787033 2.2e-14 5.0e-6 2.0e-5
20 15152 18902 36619 17280 5545481 2.2e-14 5.2e-6 1.8e-5
10 17734 20552 38289 18130 5534434 2.0e-14 6.1e-6 2.1e-5

Table II. Statistics for some of the Matlab computations with the plane stress problem using an
AMG preconditioner.
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Laplace plane-stress
K M P−1 K M P−1

blocked 0.011 0.013 0.14 0.047 0.028 0.74
unblocked 0.014 0.018 0.56 0.060 0.036 2.9
ratio 1.3 1.3 3.9 1.3 1.3 4.0

Table III. Seconds per vector for applying the stiffness, mass matrices and preconditioner on a number
of vectors simultaneously (a block at a time) or individually (unblocked).

instead of one and so the number of floating point operations to memory references was much
higher.

A least squares fit through the data of the number of matrix vector products against
the block size was computed in order to access the benefit of block algorithms. The results
are listed in Table III. The first and second rows list seconds per vector for applying the
stiffness, mass matrices and preconditioner on a number of vectors simultaneously (a block
at a time) or individually (unblocked). The last row gives the ratios of blocked to unblocked
operations. These times have been obtained with block sizes varying between one and one
hundred. The data implies that blocking reduces the execution times by a factor two for
matrix-vector multiplication and by a factor of four when applying the preconditioner. The
timings show that applying the preconditioner is 50–100 times more expensive than a matrix-
vector multiplication. We believe this finding will also be the case when using a compiled
computer language because of the deep memory hierarchies now prevalent.

Do these results change if the multiple eigenvalues of problem one become clustered
eigenvalues (accomplished by varying the number of grid points in each space dimension)?
With smaller two-dimensional Laplace test problems we observed that the algorithms were not
sensitive to small changes in the eigenvalues except for DACG and LOPCG. The execution
times of these two algorithms increased by 50% to 100% when the eigenvalues are in clusters of
size 10−4 as opposed to the case when there are actual multiplicities. We remark that DACG
and LOPCG are the two true single vector iterations.

As an experiment we ran both problems on all the algorithms using the ‘perfect’
preconditioner—the Cholesky factors of the stiffness matrix. In this situation PIRL was the
most efficient solution when computing 100 and 500 eigenvectors; the latter case saw PIRL
twice as fast as LOBPCG, which itself was faster than the numbers given in Table II. This
finding conforms with similar comparisons made in [1] that shift-and-invert Lanczos or Arnoldi
methods are the most efficient solvers when K− σM can be factored.

6. Conclusion

The goal of our report was to compare a number of algorithms for computing a large number
of eigenvectors of the generalized eigenvalue problem arising from a modal analysis of elastic
structures using preconditioned iterative methods. After a review of various iteration schemes,
a substantial amount of experiments were run on two problems using an AMG preconditioner.

Our overall conclusion is that the block algorithms, in particular LOBPCG, are the most
efficient. This statement holds under the condition that matrix-vector multiplications and,
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most significantly, the application of the preconditioner are applied in a blocked fashion and
the block size is selected as large as possible.

Finally, if the stiffness matrix K can be factored, then the shift-and-invert Lanczos algorithm
(for instance, as implemented in PIRL) becomes the algorithm of choice.
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